Invariant Approximation Results via Common Fixed Point Theorems for Generalized Weak Contraction Maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common Fixed-Point Theorems For Generalized Fuzzy Contraction Mapping

In this paper we investigate common xed point theorems for contraction mapping in fuzzy metric space introduced by Gregori and Sapena [V. Gregori, A. Sapena, On xed-point the- orems in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), 245-252].

متن کامل

common fixed-point theorems for generalized fuzzy contraction mapping

in this paper we investigate common xed point theorems for contraction mapping in fuzzy metric space introduced by gregori and sapena [v. gregori, a. sapena, on xed-point the- orems in fuzzy metric spaces, fuzzy sets and systems, 125 (2002), 245-252].

متن کامل

Fixed Point and Common Fixed Point Theorems for Generalized Weak Contraction Mappings of Integral Type in Modular Spaces

where 0 < k < 1. The Banach Contraction Mapping Principle appeared in explicit form in Banach’s thesis in 1922 1 . For its simplicity and usefulness, it has become a very popular tool in solving existence problems in many branches of mathematical analysis. Banach contraction principle has been extended in many different directions; see 2–6 . In 1997Alber andGuerreDelabriere 7 introduced the con...

متن کامل

Extensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces

The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2014

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2014/752107